منابع مشابه
Partial Robust M-Regression
Partial Least Squares (PLS) is a standard statistical method in chemometrics. It can be considered as an incomplete, or “partial”, version of the Least Squares estimator of regression, applicable when high or perfect multicollinearity is present in the predictor variables. The Least Squares estimator is well-known to be an optimal estimator for regression, but only when the error terms are norm...
متن کاملRobust Regression with Projection Based M-estimators
The robust regression techniques in the RANSAC family are popular today in computer vision, but their performance depends on a user supplied threshold. We eliminate this drawback of RANSAC by reformulating another robust method, the M-estimator, as a projection pursuit optimization problem. The projection based pbM-estimator automatically derives the threshold from univariate kernel density est...
متن کاملSketching for M-Estimators: A Unified Approach to Robust Regression
We give algorithms for the M-estimators minx ‖Ax− b‖G, where A ∈ Rn×d and b ∈ R, and ‖y‖G for y ∈ R n is specified by a cost function G : R 7→ R≥0, with ‖y‖G ≡ ∑ iG(yi). The M -estimators generalize `p regression, for which G(x) = |x|. We first show that the Huber measure can be computed up to relative error in O(nnz(A) logn + poly(d(log n)/ε)) time, where nnz(A) denotes the number of non-zero ...
متن کاملRobust regularized M-estimators of regression parameters and covariance matrix
High dimension low sample size (HD-LSS) data are becoming increasingly present in a variety of fields, including chemometrics and medical imaging. Especially problems with n < p (more variables than measurements) present a challenge to data analysts since the classical techniques can not be used. In this paper, we consider HD-LSS data in regression parameter and covariance matrix estimation pro...
متن کاملRobust designs for approximately linear regression: M-estimated parameters
We obtain designs, to be used for investigations of response surfaces by regression techniques, when (i) the fitted, linear (in the parameters) response is incorrect and (ii) the parameters are to be estimated robustly. Minimax designs are determined for ‘small’ departures from the fitted response. We specialize to the case in which the experimenter fits a plane, when in fact the true response ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2020
ISSN: 0167-9473
DOI: 10.1016/j.csda.2020.106944